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ABSTRACT

Dynamic difficulty adjustment (DDA) is a technique for
adaptively changing a game to make it easier or harder.
A common paradigm to achieve DDA is through heuristic
prediction and intervention, adjusting game difficulty once
undesirable player states (e.g., boredom or frustration) are
observed. Without quantitative objectives, it is impossible
to optimize the strength of intervention and achieve the best
effectiveness.

In this paper, we propose a DDA framework with a global
optimization objective of maximizing a player’s engagement
throughout the entire game. Using level-based games as our
example, we model a player’s progression as a probabilistic
graph. Dynamic difficulty reduces to optimizing transition
probabilities to maximize a player’s stay time in the progres-
sion graph. We have successfully developed a system that
applies this technique in multiple games by Electronic Arts,
Inc., and have observed up to 9% improvement in player
engagement with a neutral impact on monetization.

Keywords

Dynamic difficulty adjustment, player engagement optimiza-
tion, progression model

1. INTRODUCTION

Difficulty is a critical factor in computer games and is
a challenging factor to set appropriately. Game developers
often use pre-defined curves that manipulate the level dif-
ficulty as players advance. Although these difficulty curves
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are usually defined by experienced designers with strong do-
main knowledge, they have many problems. First, the di-
versity among players is large. Players have a wide variety
of experiences, skills, learning rates, and playing styles, and
will react differently to the same difficulty setting. Second,
even for an individual player, one’s difficulty preference may
also change over time. For example, in a level progression
game, a player who loses the first several attempts to one
level might feel much less frustrated compared to losing after
tens of unsuccessful trials.

In contrast to static difficulty, dynamic difficulty adjust-
ment (DDA) addresses these concerns. Such methods ex-
hibit diversity in the levers that adjust difficulty, but share
a common theme: prediction and intervention. DDA pre-
dicts a player’s future state given current difficulty, and then
intervenes if that state is undesirable. The strength of this
intervention, however, is both heuristic and greedy. The ad-
justment might be in the right direction, such as making
a level easier for a frustrated player. But how easy should
the game be to achieve optimal long term benefit is an open
question.

In this paper, we will address these issues by defining dy-
namic difficulty adjustment within an optimization frame-
work. The global objective within this framework is to maxi-
mize a player’s engagement throughout the entire game. We
first model a player’s in-game progression as a probabilistic
graph consisting of various player states. When progress-
ing in the game, players move from one state to another.
The transition probabilities between states are dependent
on game difficulties at these states. From this perspective,
maximizing a player’s engagement is equivalent to maximiz-
ing the number of transitions in the progression graph. This
objective reduces to a function of game difficulties at var-
ious states solvable by dynamic programming. While we
focus on level-based games as the context of this presenta-
tion, our DDA framework is generic and can be extended to
other genres.

The proposed technique has been successfully deployed
by Electronic Arts, Inc (EA). We developed a DDA sys-
tem within the EA Digital Platform, to which game clients
request and receive dynamic difficulty advice in realtime.
With A/B experiments, we have observed significant in-



creases in core player engagement metrics while seeing neu-
tral impact on monetization. Last, but not least, our DDA
recommendations are also used by game designers to refine
the game design. For example, when our service repeatedly
recommends easier difficulty for a certain level, the game
designer knows to decrease the pre-defined difficulty of that
level to satisfy the majority of population.
To sum up, the core contributions of this paper are:

e We propose a DDA framework that maximizes a player’s
engagement throughout the entire game.

e We introduce a probabilistic graph that models a player’s

in-game progression. With the graph model, we de-
velop an efficient dynamic programming solution to
maximize player engagement.

e We describe a real-time DDA system that successfully
boosted engagement of multiple mobile games.

In the remainder of this paper, we will first review re-
lated DDA research. We then introduce the graph model
of player’s progression and describe the objective function
and our optimization solution. We will next report on the
application of this DDA technique in a live game as a case
study. Finally, we discuss the results of this case study and
our future directions.

2. RELATED WORK

Personalized gaming is one of the major trends for dig-
ital interactive games in recent years [10]. Personalization
approaches include content generation, personalized game-
play, and dynamic difficulty adjustment. The theme shared
by almost all game difficulty adjustment studies is that they
attempt to prevent a player from transiting to undesired
states, such as boredom or frustration. There are several
common challenges in difficulty adjustment. For example,
how to evaluate a player’s current state? How to predict
a player’s upcoming state? What levers are appropriate to
use? How to adjust the levers to most appropriate diffi-
culty level? In this section, we review how previous work
addressed these questions from different perspectives.

Many approaches are based on the evaluation of players’
skill and performance, and then adapting game difficulty to
match the skill level. Zook et al. conducted a series of inves-
tigations following this idea [15, 16]. They proposed a data-
driven predictive model that accounts for temporal changes
in player skills. This predictive model provides a guide for
just-in-time procedural content generation and achieves dy-
namic difficulty adjustment. Similarly, Jennings et al. au-
tomatically generate 2D platformer levels in a procedural
way [9]. They developed a simulator where players play a
short segment of a game for data collection. From this data,
they constructed a statistical model of the level element dif-
ficulty. They also learned player skill model from the simu-
lator data. Hagelback et al. [6] studied dynamic difficulty by
measuring player experience in Real Times Strategy (RTS)
games. They, too, use an experimental gaming environment
to evaluate testing players’ subjective enjoyment according
to different dynamic difficulty schemes.

The majority of DDA systems rely upon prediction and
intervention as their fundamental strategy. Hamlet is a well
known Al system using Valve’s Half Life game engine [8].

Lev k Lev k+1 Lev k+2

—O—O— @ ™
Wi (1-¢%)
‘ : Trial t
(1-w ) (2-c )

L
Wi e ¥ (1w ) by,

Trial t+1

Figure 1: A player’s progression model in a typi-
cal level-based game. We use a probabilistic graph
consisting of player states (each circles) to model
this progression. Two dimensions, levels and tri-
als are used to identify different states. The direc-
tional edges represent possible transition between
these states.

It takes advantages of the flow model developed by Csik-
szentmihalyi [3], that defines player states on two dimen-
sions: skill and challenge. They suggested the game chal-
lenge should match the player skill, therefore some states
are preferable while others are not. Hamlet predicts player
states, and adjusts the game to prevent inventory shortfalls.
Missura and Gartner [11] formalizes the prediction in a more
rigorous probabilistic framework. They try to predict the
“right” difficulty by formulating the task as an online learn-
ing problem on partially ordered sets. Hawkins et al.[7] takes
players’ risk profile into account when predicting player per-
formance. Cautious players and risk takers also behave dif-
ferently in response to dynamic balancing mechanics.

Researchers have also explored the use of various levers to
achieve dynamic difficulty. It is preferred that the adjust-
ment by the levers be invisible to players so that they do
not feel coddled or abused. Popular levers in the DDA liter-
ature include procedural level content [9, 15, 16], off stage
elements (such as weapon or support inventory) [8], and Al
assistant or opponent [4, 13].

Almost all previous work shares a common limitation.
These approaches focus on short-term effects, i.e., using the
difficulty adjustment to immediately rescue player from un-
desired states. With the prediction and intervention strat-
egy, these methods tend to perform greedy actions, often
leading to short-term benefits, but failing to achieve long-
term optimal impacts. In contrast, our proposed technique
achieves DDA by maximizing a long-term objective, such
as player’s engagement throughout the entire game. In the
following section, we describe how to model the entire game
engagement, achieve global optimality, and keep players in
the game.

3. PLAYER PROGRESSION MODEL

We focus on level-based games in this paper. In a level-
based game, a player can unlock and advance to the higher
levels only if the player wins the current level. There are
many well known digital games e.g. Super Mario Bros. (Nin-
tendo Co., Ltd.) and Plants vs. Zombies (Electronic Arts,
Inc.) belong to the level-based game category. We first in-
troduce a progression graph to model players’ progression
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Figure 2: A zoom-in look of the state transitions and
the associated rewards. The reward at sy, i.e., Ry,
is the weighted sum of the awards at the adjacent
states. This property leads to reward maximization
with dynamic programming.
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trajectories in the game. The modeling approach described
below can be generalized to other game types as well.

Defining appropriate states is the key to constructing a
progression model. Specifically for level-based games, we
simply define the player progression state with two dimen-
sions, level and trial. A player can either advance to a higher
level or remain on the current level with repeated trials.
Fig. 1 illustrates the progression graph schema. We denote
state that a player is playing the k-th level at the ¢-th trial as
Sk,t- Within the progression graph, a player’ progression can
be represented by a sequence of transitions between states.
For example, when a player completes one level, he will ad-
vance to a new first trial state in the next level. When a
player fails and retries the same level, he will move to the
next trial state on the same level. A special, but critical,
state is the churn state. Players who enter the churn state
will never return to the game. Hence, the churn state is
an absorbing state avoided by the optimization process of
DDA.

We now define the transitions between states (represented
as directional edges in Fig. 1). A player can only transit to
one of two adjacent live states from current live state: 1)
the player wins and advances to the first trial of the next
level, i.e., Skt — Sk+1,1; 2) loses but retries the current level,
i.e., Skt — Sk,t+1. Lechnically, the assumption is not always
true since players are able to retry the current level or play
even lower levels after winning. Level replay rarely happens
in most games, however. In addition to the transitions de-
scribed above, all live states can directly transit to the churn
state as player leave the game.

Given this structure, we need a probabilistic model of each
transition that measures the likelihood of the transition hap-
pening. All outgoing transition probabilities sum to one.
Since there are only three types of transitions, we can easily
investigate each transition respectively.

Level-up Transition Starting at state sk, players can
level up to state sipy1,1 only if they win and do not
churn. Denoting the win rate (i.e., probability to win
this level at this state) as ws,:, and the churn rate after
winning as CZ'Q, we have the level-up probability as:

Pr(ski1,1|se,) = wie(1 — i) (1)

Retry Transition From sy ¢, players transits to retrial state
Sk,t+1 only if they lose and do not churn. The proba-
bility of loss is 1 — wy ¢. Denoting the churn rate after
losing as Cé,t’ we have the retry probability as:

Pr(seslses) = (1 — wie) (1 — ciy) (2)

Churn Transition Unless players make the above two tran-
sitions, they will churn. The total churn probability at
Sk,¢ is the sum of the churn probabilities after winning
and after losing, i.e.,

Pr(churnl|sg,:) = wk,th‘,@ +(1- wk,t)cﬁ,t (3)

We illustrate the transition probabilities for a given state
model in Fig. 1. This probabilistic graph model is the foun-
dation of our optimization framework for dynamic difficulty
adjustment in the next section. Note that we assume c;‘f{t

and cﬁ’t are independent of wy ;.

4. ENGAGEMENT OPTIMIZATION

4.1 Objective Function

With the player progression model, good game design and
difficulty adjustment should seek to prevent players from
falling into the churn state. DDA achieves higher engage-
ment by adjusting win rates so that the player stays on a
state trajectory with lower churn rates. While existing DDA
techniques adapt difficulties at each state in a greedy and
heuristic manner, our framework identifies optimal win rates
for all states, targeting a global objective: maximizing a
player’s total engagement throughout the entire game.

Engagement indicates the amount of players’ gameplay.
There are multiple engagement metrics, e.g., the number
of rounds played, gameplay duration and session days. In
this paper, we chose to optimize the total number of rounds
played. Three reasons drive this selection. First, the number
of rounds a player plays is easily measured in the progression
graph. It is the transition count before reaching the churn
state or completing the game. Second, many engagement
metrics turn out to strongly correlate with each other. We
will discuss this observation in Section 5.4. Third, maxi-
mizing the number of rounds prevents degenerate solutions
that rush a player to the completion state by making the
game too easy. Any solution with round repetition will score
higher than the shortest path through the graph.

We use R to denote the reward function, i.e., the expected
total number of rounds a player will play through the entire
game. While R hardly looks tractable, we convert it to a
more solvable iterative form with the help of the Markov
property of the progression graph model. We define reward
Ry + as the expected total number of rounds played after the
state sk, (level k with trial ¢). Although we only consider
the expectation of the reward in this paper, one could also
optimize the variance.

As the player can only transit to two adjacent live states,
Sk+1,t and Sk,ty1, or churn, Ry : can be computed as the
weighted sum of Rp41,+ and Rg,y1. The weights are the
transition probabilities between the states. Mathematically,
it is written as

Rk,t = Pr(5k+1,t|5k,t) . Rk+1,t
+ Pr(sk,e+1|8k,¢) - Riee1 + 1,

(4)



where Pr(si41,¢|S%,¢) is the probability that the player wins
and levels up, and Pr(sg,t+1|sk,+) is the probability that one
failed and retries. Adding one represents the reward by com-
pleting that round. Transition to the churn state does not
contribute to the engagement.

Furthermore, substituting the transition probabilities from
Eqns. 1 and 3 into Eqn. 4 (see Fig. 2), produces

Ry =wi (1= cy) - Rigae

L (5)
+ (1 —wee)(1—cke) - Reevr + 1.

Note that the original optimization objective, R, corre-
sponding to Ri,;. Based on Eqn. 5, Ri,1 is a function of
win rates at all states, {wx,}, where {¢;";} and {cf,} are
parameters that can be extracted from performance data
(see details in Section 4.3). Dynamic difficulty adjustment
reduces to solving optimal {wy;} for maximizing Ry ;.

4.2 Solving for Optimal Difficulties

We need to solve an optimization problem that finds a set
of optimal difficulties over all states, thus

W* = argmax R11 (W), (6)
W

where W = {wy+}. In practice, each wy+ is constrained by
game design and content. We solve for optimal W under the
constraint that wg,: € [w}f,‘t”, wph].

With Egn. 5, we can solve this optimization effectively
with dynamic programming. Denoting R}, ; as the maximum
reward over all possible difficulty settings, we have:

* w *
Ry, =max wi,:(1—cpy) Rey1e

L
+ (= wr)(I = k) Rppr +1, (7)
st wet € [w}co?7wzp’t]

We can see that RZ,t is a linear function of wy ¢ under a
constraint. Therefore, the optimal win rate for state s,
wy, 4, can be found by:

* w *

Wk = argmax  Wee(1 —cry) - Rt
Wk, t

+ (1 — wk‘t)(l — Cﬁl’t) . R;:,t-l-l + 1

= argmax wy,((1 — CZ‘Q) Ry —(1— cﬁ,t) Ry t11)-

Wit

(8)
Eqn. 8 shows that given the maximal rewards of two fu-
ture states, Ry .;, and Ry} ,,,, the optimal difficult wy ,
can be computed easily. As the player progression model
is a directed acyclic graph, we can solve the optimization
with dynamic programming. We start with a few destination
states whose rewards are pre-defined and then compute the
rewards of the previous states backward. The primary desti-
nation state is the end of the game, sx1,1, where K = kmaq
is the highest level of the game. We assign zero to R 11
as the reward for completion of the game. Another set of
destination states are those when the number of retrials ex-
ceeds a limit, i.e., s, 7 where T' > t;n40. By having the upper
bound of the retrial time, we can keep the progression graph
to a reasonable size. This also prevents a player from too
many retrials on a level when the optimization produces un-
realistic results. In our experiment we set ¢4, = 30 and

Ry =1.

Churn rate

100 0

Figure 3: An example of a churn surface, which con-
sists of cﬁﬁt at all states si:. The churn rates at 1st,
3rd, 10th trials for each level are highlighted in black
to illustrate how the churn rate evolves as a player’s
re-trials increases.

4.3 Churn Rates

We assume the churn rates in state transitions (c}?ft and
cﬁ}t) as known parameters. In practice, churn is identified
as no gameplay during a period of time. We use a 7-day
time frame that is common in the game industry and collect
historical gameplay data of players at all states (levels and
trials) to measure the churn rates. At state sg., let cj;
be the ratio of players who churn after winning, and cﬁyt
after losing. We view the churn rate over all states a two
dimensions churn surface. Fig. 3 shows a visual example of
a churn surface of cﬁt.

These estimates of churn rates take only two input fea-
tures, level and trial, while ignoring other players’ individ-
ual features such as age, play frequency, play style, skill,
performance, etc. To further improve the accuracy of churn
rates, we could take advantage of long-standing churn pre-
diction research [2, 5, 12], by employing sophisticated predic-
tive models on individual player features to improve perfor-
mance. A major challenge of using runtime churn prediction
is that it increases the complexity of dynamic programming
optimization. Pre-computation with various possible churn
rates at each state (via bucketing) would be needed. This
mechanism is not employed by our current system, but will
be worth exploring in the future.

5. CASE STUDY: DDA IN A LIVE GAME

We now present the case study with one of our DDA im-
plementations, a mobile match-three game developed and
published by EA. Classic example of match-three genre, e.g.
Candy Crush Saga by King and Bejeweled by EA, has a
game board contains multiple items in different colors and
shapes. A player can swap two adjacent items in each move
as long as three or more items of the same color become
aligned together vertically or horizontally. The aligned items
will be eliminated from the board. At each level, a player
needs to achieve a specific goal, for example, score a number
of points in a limited number of moves. The game features
more than two hundred levels. A player starts from the low-
est level and advances to the higher levels. Only if a player
wins the current level, the next higher level will be unlocked.
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Figure 5: Difficulties of various random seeds at a
level of the match-three game. Difficulty is mea-
sured by the win rate of a certain seed, i.e., the
percentage out of all trials with this seed are actu-
ally wins. The variance of difficulties across seeds
is large. We can see that the easiest seed (leftmost,
seed 38) shows a win rate up to 0.75. In contrast,
the hardest seed (rightmost, seed 71) has a win rate
as low as 0.15.

Before adopting DDA, we must ask: can DDA help this
game? To answer this question, we must convince ourselves
of a causal link between the difficulty and engagement. First,
we should determine if game difficulty is affecting the player
engagement in the game. Second, appropriate levers should
exist to effectively adjust the game difficulty. We will exam-
ine these two prerequisites in the following sections.

5.1 Difficulty and Engagement

To evaluate the impact of difficulty on player engagement,
we compared the retained population with level difficulties
(see Fig. 4). Retained population (red line) at a level is
the number of players who have achieved this level as the
highest one. There are players churned at each level, thus
the retained population decreases as the level increases. The
difficulty (blue line) is measured by the average number of
trials that are needed to win this level. The more trials it
takes, the more difficult this level is. Dividing all levels into
three ranges: lower range (<20), middle range (21-80) and
high range (>80), we can see that the correlation between
retained population and difficulty varies. In the lower range
of levels, the population naturally decays regardless of the
low difficulty of these levels. Especially at level 21, there
is a slight increase in difficulty, and the number of players
drops significantly. In the high range of levels, the popula-
tion becomes flat and decays slowly, despite that these high
levels are very difficult. In contrast, in the middle range, dif-

Player
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Data Difficulty
Collection Optimizer
Game
Clients
Personalized Player
adjustment progression

Dynamic

Adjustment
Service

Figure 6: Schematic diagram of the Dynamic Diffi-
culty Adjustment system.

ficulty spikes are highly correlated with the steep drops in
retained population. This observation supports the hypoth-
esis that appropriate difficulty adjustment has the potential
to enhance player engagement for this game.

5.2 Difficulty Lever

DDA adjusts win rates at different states in the progres-
sion graph through a difficulty lever. An effective difficulty
lever needs to satisfy two key constraints. First, adjusting
this lever should make the game easier or harder. Second,
adjusting this lever should be invisible to players (as re-
viewed in [10]). For example, although we can simply change
the “goal” or “mission” to lower game difficulty, players can
easily observe it in retrials. As a consequence, such changes
undermine the players’ sense of accomplishment even when
they finally win with the help of DDA.

Fortunately, the case study game provides an effective dif-
ficulty lever: the random seed of board initialization. At the
beginning of each round, the board is initialized from a ran-
dom seed, which is indexed by a integer from 0 to 99. After
evaluating the average win rate of each seed in gameplay
data, we find a wide range of difficulties. Fig. 5 shows an
example of difficulties versus seeds at one level. The seeds
are ordered by their observed win ratios. We can see that the
easiest seed (leftmost) has a win rate as high as 0.75, while
the hardest seed (rightmost) has a win rate as low as 0.15.
The player who plays the hardest seeds will take 5x more
trials to pass this level than those playing the easiest seeds.
This variance can be explained by the game mechanism. For
example, some initial boards have many items of the same
color close to each other, making it significantly easier to
match items than boards with more pathological scattering.
By carefully selecting the seed according the mapping in
Fig. 5, we can control the game difficulty for players on this
level. The hardest and easiest seeds provide the lower and
upper bounds of win rates, i.e., w°¥ and w*? in Eqn. 6.

5.3 Dynamic Adjustment System

We developed a real-time system to serve dynamic diffi-
culty adjustments in an EA match-three game. Fig. 6 de-
scribes the workflow of the DDA system. At the beginning
of each game round, the game clients send a request to the
DDA service. The dynamic adjustment service determines
the most suitable difficulty for the current player state, sg,:



based on the player progression and difficulty optimization
results, wy ,. The optimal win rates are computed offline
as discussed in Section 4.2. Since we use random seeds as
the difficulty lever, the dynamic adjustment service then
applies the mapping from win rates to the random seeds
showed in Fig. 5 and return it to the game client. In prac-
tice, we randomly select one seed from the top five candidate
seeds to prevent from repeatedly playing only one seed. The
game was first released in a period without DDA (soft launch
phase), allowing the measurement of win rate for each ran-
dom seed. After DDA is started, we continued collecting
player data to improve the random seed mapping, churn
probabilities, and difficulty optimization.

5.4 Experimental Results

To measure the effectiveness of our technique, we con-
ducted A/B experiments that use multiple variants as con-
trol and treatment groups. The control group randomly
recommends seeds out of all possibilities, an action cor-
responding to the default game behavior. The treatment
group recommends the seeds based on our DDA optimiza-
tion. We calculated all parameters for optimization, such
as the churn surface and win rates of seeds, from real game
play data. We kept track of these parameters and updated
them when significant changes were observed.

The experiment started two weeks after the global release
of the game. We conducted the experiment in three phases,
where the proportion of the treatment group increased grad-
ually from 10% to 40%, and finally 70% (the proportion of
the control group decreases from 90%, 60% to 30%). The
first two phases each lasted about one month. The third
phase has been live for about four months and is ongoing.
We compared core engagement metrics between the control
and the treatment groups to evaluate the effectiveness of our
DDA scheme. The results are daily averages normalized ac-
cording to the proportion of its group, so that groups with
different proportions could be compared. Phase III has not
been terminated in order to collect churn probabilities and
evaluate performance.

Table 1 shows the increase of the number of rounds played,
suggesting that the DDA is optimizing its objective metric.
In each phase of increasing treatment populations, all treat-
ment groups exhibits statistically significant improvement
(p-value < 0.05). Table 2 shows the impact of DDA on an-
other engagement metric, total gameplay duration. Though
this metric is not the explicit optimization objective of DDA,
we wanted to test an alternative hypothesis that players
played more rounds in the same amount of time. Our DDA
treatment group shows significant improvement on this en-
gagement metric as well. Similarly, performance increased
as more data was collected in the second phase; then stayed
stationary when the gameplay data became accurate and
stable in the latest phase. Note that we see slightly different
performances between iOS and Android platforms, though,
in the same order. This resonates with the common ob-
servation in mobile game development that user behaviors
between platforms often differ from each other [1, 14], so
that separate modeling and treatment are preferred.

We observed the lowest performance in Phase I, when
DDA is completely based on the model we learned from
limited data - soft launch data and first two weeks in world-
wide release. The soft launch data is only partially useful as
some game design is changed before worldwide release. After

Phase| Platform| Default | DDA | Delta | Gain

T i0S 1,118,237 | 1,167,616 | +49,379 | +4.4%
Android 789,640 | 825,182 | +35543 | +4.5%
I i0S 855,267 | 915,334 | +60,067 | +7.0%
Android | 1,137,479 | 1,228,473 | 490,995 | +7.9%
m i0S 711,749 | 763,508 | +51,759 | +7.2%
Android | 1,285,448 | 1,366,820 | +81,373 | +6.3%

Table 1: Total numbers of rounds played daily in the
default (control) group versus in the DDA treated
group. Delta is the absolute increase by DDA and
Gain is the relative increase.

Phase| Platform| Default | DDA | Delta | Gain

i i0S 3,684,082 | 3,847,516 | +163,435] +4.4%
Android | 2,686,781 | 2,814,953 | +128,172| +4.8%
I i0S 2,016,570 | 3,148,722 | +232,152| +7.9%
Android | 3,787,414 | 4,129,762 | +342,348| +9.0%
I i0S 2,582,809 | 2,788,690 | +205,881] +8.0%
Android | 4,619,907 | 4,956,680 | +336,773| +7.3%

Table 2: Total durations of gameplay time (in min-
utes) daily in the control group versus in the DDA
treated group.

the release, we continued to collect more data to form more
accurate parameters for DDA optimization. This explains
the further improved performance in Phase II over Phase I.
In Phase III, the performance has been observed stable for
more than three months. The amount of boost is relatively
smaller than that of Phase II because there are fewer new
players in this phase and DDA has higher impacts on early
stage players (see Fig. 4).

Last but not least, we also compared the impact on mon-
etization between the control and the treatment groups.
This comparison is critical as a monetization objective might
contradict engagement maximization. Our DDA treatment
group had a neutral impact on monetization. No statisti-
cally significant difference on in-game transaction revenues
was observed between two groups. This is probably caused
by the mechanism of our optimization framework: it “saves”
players of high churn risks, who are less likely to spend.

6. CONCLUSION

In this paper, we presented a framework that approaches
dynamic difficulty adjustment (DDA) as an optimization
problem. While existing DDA systems adapt game difficulty
in a greedy manner for local benefit, our method maximizes
the player engagement throughout the entire game. We
modeled the player progression as a probabilistic graph, with
which engagement maximization becomes a well-defined ob-
jective and we proposed an efficient dynamic programming
method to solve it. We evaluated an implementation of the
DDA technique in a mobile game by EA. The DDA treated
group shows significant increases in core engagement met-
rics, such as a total number of rounds played and gameplay
duration, while it is revenue neutral compared to the control
group with no DDA enabled.

In the near future, we will extend the framework to a
wide range of game genres. The key to successfully apply-
ing DDA to other genres is the construction of an adequate
progression model. For level-based games, the states can
be naturally identified by two major dimensions: level and
trial. For more complicated games with non-linear or multi-



ple progressions, such as role-playing games (RPG), we can
also define the states with different dimensions. The graph
might be more complicated as it includes more states and
connections. Solving the optimal difficulty associated with
each state, which maximizes player engagement, however,
remains a well-defined graph optimization problem.

Another problem worth investigating is the cold-start stage
when the graph parameters (such as seed difficulty and churn
risks) needed for optimization are not known yet. In the
current system, we learned these parameters in soft launch
and the first few weeks after release before starting treat-
ment (see Section 5.4). A possible direction is to conduct
reinforcement learning at this early state, by defining some
short-term awards that help quickly establish greedy poli-
cies. Once sufficient data is collected, we can then shift to
the supervised optimization framework.

Last but not least, we would like to explore generic dy-
namic player experience. Beyond difficulty adjustment, how
can we provide a dynamic and intelligent game experience
personalized for individual players? It includes, but not
limited to, dynamic tutorials, dynamic messages, dynamic
awards, dynamic advertisement and etc. We believe that the
progression model and corresponding optimization frame-
work will become key to these generic solutions.
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